Complete Axiomatization for Divergent-Sensitive Bisimulations in Basic Process Algebra with Prefix Iteration
نویسندگان
چکیده
We study the divergent-sensitive spectrum of weak bisimulation equivalences in the setting of process algebra. To represent the infinite behavior, we consider the prefix iteration extension of a fragment of Milner’s CCS. The prefix iteration operator is a variant on the binary version of the Kleene star operator obtained by restricting the first argument to be an atomic action and allows us to capture the notion of recursion in a pure algebraic way. We investigate four typical divergent-sensitive weak bisimulation equivalences, namely divergent, stable, completed and divergent stable weak bisimulation equivalences from an axiomatic perspective. A lattice of distinguishing axioms is developed and thus pure equational axiomatizations for these congruences are obtained. A large part of the current paper is devoted to a considerable complicated proof for completeness. This work, to some extent, sheds light on distinct semantics of divergence.
منابع مشابه
A Complete Axiomatization for Prefix Iteration in Branching Bisimulation
This paper studies the interaction of prefix iteration with the silent step in the setting of branching bisimulation. We present a finite equational axiomatization for Basic Process Algebra with deadlock, empty process and the silent step, extended with prefix iteration, and prove that this axiomatization is complete with respect to rooted branching bisimulation equivalence.
متن کاملA Complete Equational Axiomatization for Prefix Iteration
Prefix iteration a∗x is added to Minimal Process Algebra (MPAδ), which is a subalgebra of BPAδ equivalent to Milner’s basic CCS. We present a finite equational axiomatization for MPA∗ δ , and prove that this axiomatization is complete with respect to strong bisimulation equivalence. To obtain this result, we set up a term rewriting system, based on the axioms, and show that bisimilar terms have...
متن کاملACompleteEquationalAxiomatization for Prefix Iteration with Silent Steps
Fokkink ((1994) Inf. Process. Lett. 52: 333–337) has recently proposed a complete equational axiomatization of strong bisimulation equivalence for MPAδ(Aτ ), i.e., the language obtained by extending Milner’s basic CCS with prefix iteration. Prefix iteration is a variation on the original binary version of the Kleene star operation p∗q obtained by restricting the first argument to be an atomic a...
متن کاملA Complete Axiomatization for Pre x Iteration in Branching Bisimulation
This paper studies the interaction of pre x iteration x with the silent step in the setting of branching bisimulation That is we present a nite equational axiomatization for Basic Process Algebra with deadlock empty process and the silent step extended with pre x iteration and prove that this axiomatization is complete with respect to rooted branching bisimulation equivalence
متن کاملAxiomatizations for the Perpetual Loop in Process Algebra
Milner proposed an axiomatization for the Kleene star in basic process algebra, in the presence of deadlock and empty process, modulo bisimulation equivalence. In this paper, Milner’s axioms are adapted to no-exit iteration x, which executes x infinitely many times in a row, and it is shown that this axiomatization is complete for no-exit iteration in basic process algebra with deadlock and emp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 212 شماره
صفحات -
تاریخ انتشار 2008